
coopy Documentation
Release 0.4b

Felipe Cruz

November 27, 2013

Contents

1 Using 3

2 Restrictions 5

3 Status 7

4 contribute 9

5 contents 11
5.1 Installation . 11
5.2 1 minute coopy tutorial . 11
5.3 Using coopy . 12
5.4 coopy basics . 13
5.5 How to Use Clock . 13
5.6 Method Decorators . 14
5.7 Snapshots . 15
5.8 Utilitary API . 16
5.9 Client-Server . 16
5.10 Master/Slave replication . 17
5.11 Tests . 17
5.12 Coverage Report . 18
5.13 Roadmap . 18
5.14 Changelog . 18
5.15 TODO . 18

i

ii

coopy Documentation, Release 0.4b

coopy is a simple, transparent, non-intrusive persistence library for python language. It’s released under BSD License

• Simple - you don’t have to learn an API. You can use it with just one line of code.

• Transparent - you don’t need to call any API functions, just your Object methods.

• Non-Intrusive - no inheritance, no interface.. only pure-python-business code.

It is based on the techniques of system snapshotting and transaction journalling. In the prevalent model, the object data
is kept in memory in native object format, rather than being marshalled to an RDBMS or other data storage system. A
snapshot of data is regularly saved to disk, and in addition to this, all changes are serialised and a log of transactions
is also stored on disk.

http://en.wikipedia.org/wiki/Object_prevalence

Contents 1

http://www.opensource.org/licenses/bsd-license.php
http://en.wikipedia.org/wiki/Object_prevalence

coopy Documentation, Release 0.4b

2 Contents

CHAPTER 1

Using

Simple, transparent and non-intrusive. Note that Todo could be any class that you want to persist state across method
calls that modifies it’s internal state:

from coopy.base import init_persistent_system

class Todo(object):
def __init__(self):

self.tasks = []

def add_task(self, name, description):
task = dict(name=name, description=description)
self.tasks.append(task)

persistent_todo_list = init_persistent_system(Todo())
persistent_todo_list.add_task("Some Task Name", "A Task Description")

Check out how coopy works with this little 1 minute coopy tutorial and then...

It’s very important to know how coopy works, to use it. Check out coopy basics

3

coopy Documentation, Release 0.4b

4 Chapter 1. Using

CHAPTER 2

Restrictions

This should not affect end-user code. To get datetime or date objects you need to get from an internal clock. Check
this page How to Use Clock

5

coopy Documentation, Release 0.4b

6 Chapter 2. Restrictions

CHAPTER 3

Status

coopy is compatible with py2.6, py2.7, py3.2, py3.3 and pypy.

7

coopy Documentation, Release 0.4b

8 Chapter 3. Status

CHAPTER 4

contribute

coopy code is hosted on github at: http://github.com/felipecruz/coopy

Found a bug? http://github.com/felipecruz/coopy

9

http://github.com/felipecruz/coopy
http://github.com/felipecruz/coopy

coopy Documentation, Release 0.4b

10 Chapter 4. contribute

CHAPTER 5

contents

5.1 Installation

$ pip install coopy

5.1.1 Development Version

You can always check our bleeding-edge development version:

$ git clone http://github.com/felipecruz/coopy.git

and then:

$ python setup.py install

5.2 1 minute coopy tutorial

coopy enforces you to implement code in the object-oriented way. Imagine a wiki system:

class WikiPage():
def __init__(self, id, content):

self.id = id
self.content = content
self.history = []
self.last_modify = datetime.datetime.now()

class Wiki():
def __init__(self):

self.pages = {}
def create_page(self, page_id, content):

page = None
if page_id in self.pages:

page = self.pages[page_id]
if not page:

page = WikiPage(page_id, content)

11

coopy Documentation, Release 0.4b

self.pages[page_id] = page
return page

It’s very easy to implement a wiki system thinking only on it’s objects. Let’s move forward:

from coopy import init_system
wiki = init_system(Wiki(), "/path/to/somedir")
wiki.create_page(’My First Page’, ’My First Page Content’)

That’s all you need to use coopy. If you stop your program and run again:

from coopy import init_system
wiki = init_system(Wiki(), "/path/to/somedir")
page = wiki.pages[’My First Page’]

If you want to know how coopy works, check out coopy basics

5.3 Using coopy

There are many different ways to use coopy. Let me show you some:

class WikiPage():
def __init__(self, id, content):

self.id = id
self.content = content
self.history = []
self.last_modify = datetime.datetime.now()

class Wiki():
def __init__(self):

self.pages = {}
def create_page(self, page_id, content):

page = None
if page_id in self.pages:

page = self.pages[page_id]
if not page:

page = WikiPage(page_id, content)
self.pages[page_id] = page

return page

wiki = init_system(Wiki)

or:

wiki = init_system(Wiki())

or:

wiki = init_system(Wiki(),’/path/to/log/files’)

or setup a Master node:

init_system(Wiki, master=True)

or setup a Slave node:

init_system(Wiki, replication=True)

12 Chapter 5. contents

coopy Documentation, Release 0.4b

or check all arguments:

def init_system(obj, basedir=None, snapshot_time=0, master=False, replication=False, port=5466, host=’127.0.0.1’, password=’copynet’):

5.4 coopy basics

coopy returns to you a proxy to your object. Everytime you call some method on this proxy, coopy will log to disk
this operation, so it can be re-executed later on a restore process. This behaviour assures that you object will have their
state persisted.

So far, you know that you are manipulating a proxy object and when you call methods on this object, this invocation
will be written to disk. We call log file the files that contains all operations executed on your object. This log files are
created on what we call basedir. You can specify basedir or coopy will lowercase your object class name and create a
directory with this name to store all log files.

coopy logger is responsible to receive this methods invocations, create Action objects and serialize to disk. It auto-
matically handles file rotations, like python logging RotateFileHandler, in order to keep log files not too big.

As your application is running, your log file number will be increasing and restore process can start to run slowly,
becase it’ll open many log files. To avoid that you can take snapshots from your object. Snapshot file is a copy of
your objects in memory serialized trhough the disk. As you take a snapshot, all log files older than this snapshots can
be deleted if you want. Take snapshots will also speed up the restore process, because is much more fast open 1 file
and deserialize to memory than open 10 files to execute each action inside of them.

Now, you know everything about how information are stored. Let’s see how this information are restored.

Restore process is what coopy do to restore your object state. It checks for log files and snapshot files on your
basedir to look to the last snapshot taken and all log files created after. It’ll deserialize this snapshot file and then
open all log files to re-execute all Actions that were executed after the snapshot was created. This will assure that your
object will have the same state as your object had once in the past when your program was terminated or maybe killed.

The bascis of coopy is covered here

• You are manipulating a proxy object that delegates memory execution to your domain object

• Once you call a method on proxy, this call turns into a Action object and then serialized to disk.

• Log files contain Action objects to be re-executed

• You can take Snapshots of your object to increase your restore process and have a small number of files on
your basedir

• Everytime you use coopy it’ll look to your basedir and restore your object state with the files there

All this is done using python cPickle module.

5.5 How to Use Clock

5.5.1 Date problem

coopy is based on re-execute actions performed in the past. When you call datetime.now() inside an ‘business’ method,
when your actions are executed in restore process, datetime.now() will be executed again. This behaviour will produce
unexpected results.

5.4. coopy basics 13

coopy Documentation, Release 0.4b

5.5.2 Why use Clock?

Clock uses coopy timestamp. When you execute a ‘business’ method, coopy takes the current timestamp and persist
inside action object. Clock object has his timestamp updated with action timestamp so in a restore process, Clock will
have the original timestamp, and not the timestamp from the re-execution process.

Wrong code:

def create_page(self, wikipage):
page = None
wikipage.last_modify = datetime.now()
....

Right code:

from coopy import clock
def create_page(self, wikipage):

page = None
wikipage.last_modify = self._clock.now()
....

5.5.3 Clock API

Clock-aware code validation

coopy has a validation mechanism that will not accept obvious code errors such as calling datetime.now() inside
a system method.

API

Take note that a _clock attribute is injected on your system instance and the API is always called via
self._clock.

For Clock instances

clock.now()
Return datetime.now()

Return type datetime

clock.utcnow()
Return datetime.now()

Return type datetime

clock.today()
Return date.today()

Return type date

5.6 Method Decorators

5.6.1 @readonly

This decorator means thar your method will not mofidy business objects. Like a get method from a Wiki class.
Therefore, this method will not generate a log entry at coopy actions log:

14 Chapter 5. contents

coopy Documentation, Release 0.4b

from coopy.decorators import readonly
@readonly
def get_page(self, id):

if id in self.pages:
return self.pages[id]

else:
return None

5.6.2 @unlocked

How coopy assures thread-safety? By synchronizing method invocations using a reetrant lock.

This decorator provides a means of leaving the thread safety in your hands via the @unlocked decorator. Using this
decorator, you should implement concurrency mechanism by yourself.

5.6.3 @abort_exception

Default behaviour is to log on disk, even if your code raises an exception.

If your ‘business’ method raises an exception and your method is decoreted by @abort_exception, this execution will
not be logged at disk. This means that during restore process, this invocation that raised an exception will not be
re-executed:

from coopy.decorators import abort_exception
@abort_exception
def create_page(self, wikipage):

page = None
wikipage.last_modify = coopy.clock.now()
if wikipage.id in self.pages:

page = self.pages[wikipage.id]
if not page:

self.pages[wikipage.id] = wikipage
raise Exception(’Exemple error’)

else:
self.update_page(wikipage.id, wikipage.content)

Restore process will not execute this method because it wasn’t logged at disk.

5.7 Snapshots

5.7.1 Motivation

If your domain is really active and generates tons of logs, we suggest you to take snapshots from your domain period-
ically. A snapshot allows you to delete your logs older then it’s timestamp and make the restore process faster. Today,
while taking a snapshot the domain is locked. It’s fairly common setup a local slave just for taking snapshots.

5.7.2 Example

Example:

5.7. Snapshots 15

coopy Documentation, Release 0.4b

from coopy.base import init_persistent_system

persistent_todo_list = init_persistent_system(Todo())
persistent_todo_list.add_task("Some Task Name", "A Task Description")

Take snapshot
persistent_todo_list.take_snapshot()

5.7.3 API

For domain instances

domain.take_snapshot()
Takes the domain snapshot.

5.8 Utilitary API

There are some utilitary methods to help you.

Given:

wiki = init_system(Wiki)

basedir_abspath()
Return a list with all basedirs absolute paths

5.8.1 Tests utils

If your domain uses the How to Use Clock feature, you’ll likely to face errors while testing your pure domain since
the _clock is injected by coopy.

There are 2 ways of handle this: Enable a regular clock on your domain, for testing or mock your clock to return the
same date.

TestSystemMixin.mock_clock(domain, mocked_date)
This method will inject a clock that always return mocked_date

TestSystemMixin.enable_clock(domain)
This method will inject a regular coopy clock on your domain instance

5.9 Client-Server

When you want to detach client from server, you can use coopy + Pyro (or xmlrpclib) in order to have a client and a
server (running coopy).

This is useful when you want to have only one machine dedicated to have it’s ram memory filled with python objects.

Note, that this example uses Pyro.core.ObjBase instead of Pyro.core.SynchronizedObjBase, because by default, coopy
proxy (wiki object) is already thread-safe unless you decorate your business methods with @unlocked decorator.

Server Code:

16 Chapter 5. contents

coopy Documentation, Release 0.4b

#coopy code
wiki = coopy.init_system(Wiki(), "pyro")

#pyro code
obj = Pyro.core.ObjBase()
obj.delegateTo(wiki)
Pyro.core.initServer()
daemon=Pyro.core.Daemon()
uri=daemon.connect(obj,"wiki")
daemon.requestLoop()

Client code:

#pyro code
wiki = Pyro.core.getProxyForURI("PYRO://127.0.0.1:7766/whatever")

5.10 Master/Slave replication

coopy comes with master/slave replication mechanism.

Basically:

• Master instance are read/write

• Slaves are read only

• Slaves can only execute @readonly methods.

Another detail, is that you can set a password on master. This password provides basich auth to slaves connects to a
master instance.

When slaves connects to master and passes authentication process, it will receive all data to synchronize with master
state. Commands executed further on master will be replicated to slave node.

Slaves are useful to take snapshots without needing master to be locked as well to provide load balancing for reading.

Snipets to run master and slave instances

Master instance:

init_system(Wiki, master=True)

Slave instance, default host and default port:

init_system(Wiki, replication=True)

5.11 Tests

First time:

pip install -r requirements.txt

To actually run the tests:

make test

5.10. Master/Slave replication 17

coopy Documentation, Release 0.4b

5.12 Coverage Report

First time:

pip install -r requirements.txt

And then:

make coverage

Coverage report:

$ py.test --cov coopy

Name Stmts Miss Cover
--
coopy/__init__ 0 0 100%
coopy/base 135 17 87%
coopy/decorators 9 0 100%
coopy/error 3 0 100%
coopy/fileutils 125 5 96%
coopy/foundation 71 8 89%
coopy/journal 30 2 93%
coopy/network/__init__ 1 0 100%
coopy/network/default_select 192 56 71%
coopy/network/linux_epoll 0 0 100%
coopy/network/network 42 10 76%
coopy/network/osx_kqueue 0 0 100%
coopy/restore 42 6 86%
coopy/snapshot 45 3 93%
coopy/utils 9 0 100%
coopy/validation 45 1 98%
--
TOTAL 749 108 86%

5.13 Roadmap

• First stable release

5.14 Changelog

Nothing so far.

5.15 TODO

• Finish Documentation

18 Chapter 5. contents

	Using
	Restrictions
	Status
	contribute
	contents
	Installation
	1 minute coopy tutorial
	Using coopy
	coopy basics
	How to Use Clock
	Method Decorators
	Snapshots
	Utilitary API
	Client-Server
	Master/Slave replication
	Tests
	Coverage Report
	Roadmap
	Changelog
	TODO

