

 Navigation

 	
 next

 	coopy 0.4b documentation

coopy

coopy is a simple, transparent, non-intrusive persistence library for python language. It’s released under BSD License [http://www.opensource.org/licenses/bsd-license.php]

	Simple - you don’t have to learn an API. You can use it with just one line of code.

	Transparent - you don’t need to call any API functions, just your Object methods.

	Non-Intrusive - no inheritance, no interface.. only pure-python-business code.

It is based on the techniques of system snapshotting and transaction journalling. In the prevalent model, the object data is kept in memory in native object format, rather than being marshalled to an RDBMS or other data storage system. A snapshot of data is regularly saved to disk, and in addition to this, all changes are serialised and a log of transactions is also stored on disk.

http://en.wikipedia.org/wiki/Object_prevalence

Using

Simple, transparent and non-intrusive. Note that Todo could be any class
that you want to persist state across method calls that modifies it’s internal
state:

from coopy.base import init_persistent_system

class Todo(object):
 def __init__(self):
 self.tasks = []

 def add_task(self, name, description):
 task = dict(name=name, description=description)
 self.tasks.append(task)

persistent_todo_list = init_persistent_system(Todo())
persistent_todo_list.add_task("Some Task Name", "A Task Description")

Check out how coopy works with this little 1 minute coopy tutorial and then...

It’s very important to know how coopy works, to use it. Check out coopy basics

Restrictions

This should not affect end-user code. To get datetime or date objects you
need to get from an internal clock. Check this page How to Use Clock

Status

coopy is compatible with py2.6, py2.7, py3.2, py3.3 and pypy.

contribute

coopy code is hosted on github at: http://github.com/felipecruz/coopy

Found a bug? http://github.com/felipecruz/coopy

contents

	Installation
	Development Version

	1 minute coopy tutorial

	Using coopy

	coopy basics

	How to Use Clock
	Date problem

	Why use Clock?

	Clock API

	Method Decorators
	@readonly

	@unlocked

	@abort_exception

	Snapshots
	Motivation

	Example

	API

	Utilitary API
	Tests utils

	Client-Server

	Master/Slave replication

	Tests

	Coverage Report

	Roadmap

	Changelog

	TODO

 Copyright 2012, Felipe Cruz.
 Created using Sphinx 1.1.3.

 Navigation

 	
 next

 	
 previous |

 	coopy 0.4b documentation

Installation

$ pip install coopy

Development Version

You can always check our bleeding-edge development version:

$ git clone http://github.com/felipecruz/coopy.git

and then:

$ python setup.py install

 Copyright 2012, Felipe Cruz.
 Created using Sphinx 1.1.3.

 Navigation

 	
 next

 	
 previous |

 	coopy 0.4b documentation

1 minute coopy tutorial

coopy enforces you to implement code in the object-oriented way. Imagine a wiki system:

class WikiPage():
 def __init__(self, id, content):
 self.id = id
 self.content = content
 self.history = []
 self.last_modify = datetime.datetime.now()

class Wiki():
 def __init__(self):
 self.pages = {}
 def create_page(self, page_id, content):
 page = None
 if page_id in self.pages:
 page = self.pages[page_id]
 if not page:
 page = WikiPage(page_id, content)
 self.pages[page_id] = page
 return page

It’s very easy to implement a wiki system thinking only on it’s objects. Let’s move forward:

from coopy import init_system
wiki = init_system(Wiki(), "/path/to/somedir")
wiki.create_page('My First Page', 'My First Page Content')

That’s all you need to use coopy. If you stop your program and run again:

from coopy import init_system
wiki = init_system(Wiki(), "/path/to/somedir")
page = wiki.pages['My First Page']

If you want to know how coopy works, check out coopy basics

 Copyright 2012, Felipe Cruz.
 Created using Sphinx 1.1.3.

 Navigation

 	
 next

 	
 previous |

 	coopy 0.4b documentation

Using coopy

There are many different ways to use coopy. Let me show you some:

class WikiPage():
 def __init__(self, id, content):
 self.id = id
 self.content = content
 self.history = []
 self.last_modify = datetime.datetime.now()

class Wiki():
 def __init__(self):
 self.pages = {}
 def create_page(self, page_id, content):
 page = None
 if page_id in self.pages:
 page = self.pages[page_id]
 if not page:
 page = WikiPage(page_id, content)
 self.pages[page_id] = page
 return page

wiki = init_system(Wiki)

or:

wiki = init_system(Wiki())

or:

wiki = init_system(Wiki(),'/path/to/log/files')

or setup a Master node:

init_system(Wiki, master=True)

or setup a Slave node:

init_system(Wiki, replication=True)

or check all arguments:

def init_system(obj, basedir=None, snapshot_time=0, master=False, replication=False, port=5466, host='127.0.0.1', password='copynet'):

 Copyright 2012, Felipe Cruz.
 Created using Sphinx 1.1.3.

 Navigation

 	
 next

 	
 previous |

 	coopy 0.4b documentation

coopy basics

coopy returns to you a proxy to your object. Everytime you call some method on this proxy, coopy will log to disk this operation, so it can be re-executed later on a restore process. This behaviour assures that you object will have their state persisted.

So far, you know that you are manipulating a proxy object and when you call methods on this object, this invocation will be written to disk. We call log file the files that contains all operations executed on your object. This log files are created on what we call basedir. You can specify basedir or coopy will lowercase your object class name and create a directory with this name to store all log files.

coopy logger is responsible to receive this methods invocations, create Action objects and serialize to disk. It automatically handles file rotations, like python logging RotateFileHandler, in order to keep log files not too big.

As your application is running, your log file number will be increasing and restore process can start to run slowly, becase it’ll open many log files. To avoid that you can take snapshots from your object.
Snapshot file is a copy of your objects in memory serialized trhough the disk. As you take a snapshot, all log files older than this snapshots can be deleted if you want. Take snapshots will also speed up the restore process, because is much more fast open 1 file and deserialize to memory than open 10 files to execute each action inside of them.

Now, you know everything about how information are stored. Let’s see how this information are restored.

Restore process is what coopy do to restore your object state. It checks for log files and snapshot files on your basedir to look to the last snapshot taken and all log files created after. It’ll deserialize this snapshot file and then open all log files to re-execute all Actions that were executed after the snapshot was created. This will assure that your object will have the same state as your object had once in the past when your program was terminated or maybe killed.

The bascis of coopy is covered here

	You are manipulating a proxy object that delegates memory execution to your domain object

	Once you call a method on proxy, this call turns into a Action object and then serialized to disk.

	Log files contain Action objects to be re-executed

	You can take Snapshots of your object to increase your restore process and have a small number of files on your basedir

	Everytime you use coopy it’ll look to your basedir and restore your object state with the files there

All this is done using python cPickle module.

 Copyright 2012, Felipe Cruz.
 Created using Sphinx 1.1.3.

 Navigation

 	
 next

 	
 previous |

 	coopy 0.4b documentation

How to Use Clock

Date problem

coopy is based on re-execute actions performed in the past. When you call datetime.now() inside an ‘business’ method, when your actions are executed in restore process, datetime.now() will be executed again. This behaviour will produce unexpected results.

Why use Clock?

Clock uses coopy timestamp. When you execute a ‘business’ method, coopy takes the current timestamp and persist inside action object. Clock object has his timestamp updated with action timestamp so in a restore process, Clock will have the original timestamp, and not the timestamp from the re-execution process.

Wrong code:

def create_page(self, wikipage):
 page = None
 wikipage.last_modify = datetime.now()

Right code:

from coopy import clock
def create_page(self, wikipage):
 page = None
 wikipage.last_modify = self._clock.now()

Clock API

Clock-aware code validation

coopy has a validation mechanism that will not accept obvious code errors such as
calling datetime.now() inside a system method.

API

Take note that a _clock attribute is injected on your system instance and the API is
always called via self._clock.

For Clock instances

	
clock.now()

	
Return datetime.now()

	

	Return type:	datetime

	
clock.utcnow()

	
Return datetime.now()

	

	Return type:	datetime

	
clock.today()

	
Return date.today()

	

	Return type:	date

 Copyright 2012, Felipe Cruz.
 Created using Sphinx 1.1.3.

 Navigation

 	
 next

 	
 previous |

 	coopy 0.4b documentation

Method Decorators

@readonly

This decorator means thar your method will not mofidy business objects. Like a get method from a Wiki class. Therefore, this method will not generate a log entry at coopy actions log:

from coopy.decorators import readonly
@readonly
def get_page(self, id):
 if id in self.pages:
 return self.pages[id]
 else:
 return None

@unlocked

How coopy assures thread-safety? By synchronizing method invocations using a reetrant lock.

This decorator provides a means of leaving the thread safety in your hands via the @unlocked decorator. Using this decorator, you should implement concurrency mechanism by yourself.

@abort_exception

Default behaviour is to log on disk, even if your code raises an exception.

If your ‘business’ method raises an exception and your method is decoreted by @abort_exception, this execution will not be logged at disk. This means that during restore process, this invocation that raised an exception will not be re-executed:

from coopy.decorators import abort_exception
@abort_exception
def create_page(self, wikipage):
 page = None
 wikipage.last_modify = coopy.clock.now()
 if wikipage.id in self.pages:
 page = self.pages[wikipage.id]
 if not page:
 self.pages[wikipage.id] = wikipage
 raise Exception('Exemple error')
 else:
 self.update_page(wikipage.id, wikipage.content)

Restore process will not execute this method because it wasn’t logged at disk.

 Copyright 2012, Felipe Cruz.
 Created using Sphinx 1.1.3.

 Navigation

 	
 next

 	
 previous |

 	coopy 0.4b documentation

Snapshots

Motivation

If your domain is really active and generates tons of logs, we suggest you to take snapshots from your domain periodically. A snapshot allows you to delete your logs older then it’s timestamp and make the restore process faster.
Today, while taking a snapshot the domain is locked. It’s fairly common setup a local slave just for taking snapshots.

Example

Example:

from coopy.base import init_persistent_system

persistent_todo_list = init_persistent_system(Todo())
persistent_todo_list.add_task("Some Task Name", "A Task Description")

Take snapshot
persistent_todo_list.take_snapshot()

API

For domain instances

	
domain.take_snapshot()

	
Takes the domain snapshot.

	

 Copyright 2012, Felipe Cruz.
 Created using Sphinx 1.1.3.

 Navigation

 	
 next

 	
 previous |

 	coopy 0.4b documentation

Utilitary API

There are some utilitary methods to help you.

Given:

wiki = init_system(Wiki)

	
basedir_abspath()

	Return a list with all basedirs absolute paths

Tests utils

If your domain uses the How to Use Clock feature, you’ll likely to face errors while
testing your pure domain since the _clock is injected by coopy.

There are 2 ways of handle this: Enable a regular clock on your domain, for testing
or mock your clock to return the same date.

	
TestSystemMixin.mock_clock(domain, mocked_date)

	This method will inject a clock that always return mocked_date

	
TestSystemMixin.enable_clock(domain)

	This method will inject a regular coopy clock on your domain instance

 Copyright 2012, Felipe Cruz.
 Created using Sphinx 1.1.3.

 Navigation

 	
 next

 	
 previous |

 	coopy 0.4b documentation

Client-Server

When you want to detach client from server, you can use coopy + Pyro (or xmlrpclib) in order to have a client and a server (running coopy).

This is useful when you want to have only one machine dedicated to have it’s ram memory filled with python objects.

Note, that this example uses Pyro.core.ObjBase instead of Pyro.core.SynchronizedObjBase, because by default, coopy proxy (wiki object) is already thread-safe unless you decorate your business methods with @unlocked decorator.

Server Code:

#coopy code
wiki = coopy.init_system(Wiki(), "pyro")

#pyro code
obj = Pyro.core.ObjBase()
obj.delegateTo(wiki)
Pyro.core.initServer()
daemon=Pyro.core.Daemon()
uri=daemon.connect(obj,"wiki")
daemon.requestLoop()

Client code:

#pyro code
wiki = Pyro.core.getProxyForURI("PYRO://127.0.0.1:7766/whatever")

 Copyright 2012, Felipe Cruz.
 Created using Sphinx 1.1.3.

 Navigation

 	
 next

 	
 previous |

 	coopy 0.4b documentation

Master/Slave replication

coopy comes with master/slave replication mechanism.

Basically:

	Master instance are read/write

	Slaves are read only

	Slaves can only execute @readonly methods.

Another detail, is that you can set a password on master. This password provides basich auth to slaves connects to a master instance.

When slaves connects to master and passes authentication process, it will receive all data to synchronize with master state. Commands executed further on master will be replicated to slave node.

Slaves are useful to take snapshots without needing master to be locked as well to provide load balancing for reading.

Snipets to run master and slave instances

Master instance:

init_system(Wiki, master=True)

Slave instance, default host and default port:

init_system(Wiki, replication=True)

 Copyright 2012, Felipe Cruz.
 Created using Sphinx 1.1.3.

 Navigation

 	
 next

 	
 previous |

 	coopy 0.4b documentation

Tests

First time:

pip install -r requirements.txt

To actually run the tests:

make test

Coverage Report

First time:

pip install -r requirements.txt

And then:

make coverage

Coverage report:

$ py.test --cov coopy

Name Stmts Miss Cover
--
coopy/__init__ 0 0 100%
coopy/base 135 17 87%
coopy/decorators 9 0 100%
coopy/error 3 0 100%
coopy/fileutils 125 5 96%
coopy/foundation 71 8 89%
coopy/journal 30 2 93%
coopy/network/__init__ 1 0 100%
coopy/network/default_select 192 56 71%
coopy/network/linux_epoll 0 0 100%
coopy/network/network 42 10 76%
coopy/network/osx_kqueue 0 0 100%
coopy/restore 42 6 86%
coopy/snapshot 45 3 93%
coopy/utils 9 0 100%
coopy/validation 45 1 98%
--
TOTAL 749 108 86%

 Copyright 2012, Felipe Cruz.
 Created using Sphinx 1.1.3.

 Navigation

 	
 next

 	
 previous |

 	coopy 0.4b documentation

Roadmap

	First stable release

 Copyright 2012, Felipe Cruz.
 Created using Sphinx 1.1.3.

 Navigation

 	
 next

 	
 previous |

 	coopy 0.4b documentation

Changelog

Nothing so far.

 Copyright 2012, Felipe Cruz.
 Created using Sphinx 1.1.3.

 Navigation

 	
 previous

 	coopy 0.4b documentation

TODO

	Finish Documentation

 Copyright 2012, Felipe Cruz.
 Created using Sphinx 1.1.3.

 _static/minus.png

_static/comment-bright.png

search.html

 Navigation

 		coopy 0.4b documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Felipe Cruz.
 Created using Sphinx 1.1.3.

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/down.png

_static/comment.png

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

